Fusion Using Quasilinearization Technique for the Likelihood Ratio Based T2ta in Multi Radar Data Fusion
نویسندگان
چکیده
Data fusion techniques combine data from multiple sensors, and related information from associated databases, to achieve improved accuracies and more specific inferences than could be achieved by the use of a single sensor alone. This paper presents the fusion using the generalized quasilinearization technique to obtain a monotone sequence of iterates, converging uniformly for the tracks, obtained after association. Likelihood ratio based cost for association with kinematic information [1] is used for track-to-track association (T2TA). These associated tracks and the fused track are smoothened using Kalman filter (KF). Simulated results through MATLAB are compared with the state vector fusion technique. The main advantage of the proposed method is that fusion follows the actual track where as conventional method results are based on the Kalman estimates.
منابع مشابه
Adaptive Fusion of Inertial Navigation System and Tracking Radar Data
Against the range-dependent accuracy of the tracking radar measurements including range, elevation and bearing angles, a new hybrid adaptive Kalman filter is proposed to enhance the performance of the radar aided strapdown inertial navigation system (INS/Radar). This filter involves the concept of residual-based adaptive estimation and adaptive fading Kalman filter and tunes dynamically the fil...
متن کاملFlood Forecasting Using Artificial Neural Networks: an Application of Multi-Model Data Fusion technique
Floods are among the natural disasters that cause human hardship and economic loss. Establishing a viable flood forecasting and warning system for communities at risk can mitigate these adverse effects. However, establishing an accurate flood forecasting system is still challenging due to the lack of knowledge about the effective variables in forecasting. The present study has indicated that th...
متن کاملDetecting Surface Waters Using Data Fusion of Optical and Radar Remote Sensing Sensor
Identification and monitoring of surface water using remote sensing have become very important in recent decades due to its importance in human needs and political decisions. Therefore, surface water has been studied using remote sensing systems and Sentinel-1 and Sentinel-2 sensors in this study. In this paper, two data fusion approaches and decision fusion improve the accuracy of surface wate...
متن کاملA New Approach to Self-Localization for Mobile Robots Using Sensor Data Fusion
This paper proposes a new approach for calibration of dead reckoning process. Using the well-known UMBmark (University of Michigan Benchmark) is not sufficient for a desirable calibration of dead reckoning. Besides, existing calibration methods usually require explicit measurement of actual motion of the robot. Some recent methods use the smart encoder trailer or long range finder sensors such ...
متن کاملChange Detection in Urban Area Using Decision Level Fusion of Change Maps Extracted from Optic and SAR Images
The last few decades witnessed high urban growth rates in many countries. Urban growth can be mapped and measured by using remote sensing data and techniques along with several statistical measures. The purpose of this research is to detect the urban change that is used for urban planning. Change detection using remote sensing images can be classified into three methods: algebra-based, transfor...
متن کامل